Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control.

نویسندگان

  • Olivia Prosper
  • Nick Ruktanonchai
  • Maia Martcheva
چکیده

Mathematical models developed for studying malaria dynamics often focus on a single, homogeneous population. However, human movement connects environments with potentially different malaria transmission characteristics. To address the role of human movement and spatial heterogeneity in malaria transmission and malaria control, we consider a simple malaria metapopulation model incorporating two regions, or patches, connected by human movement, with different degrees of malaria transmission in each patch. Using our two-patch model, we calculate and analyze the basic reproduction number, R(0), an epidemiologically important threshold quantity that indicates whether malaria will persist or go extinct in a population. Although R(0) depends on the rates of human movement, we show that R(0) is always bounded between the two quantities R(01) and R(02)-the reproduction numbers for the two patches if isolated. If without migration, the disease is endemic in one patch but not in the other, then the addition of human migration can cause the disease to persist in both patches. This result indicates that regions with low malaria transmission should have an interest in helping to control or eliminate malaria in regions with higher malaria endemicity if human movement connects them. Performing a sensitivity analysis of R(0) and the endemic equilibrium to various parameters in the two-patch model allowed us to determine, under different parameterizations of the model, which patch will be the better target for control measures, and within that patch, what type of control measure should be implemented. In the analysis of R(0), we found that if the extrinsic incubation period is shorter than the average mosquito lifespan, the control measures should be targeted towards reducing the mosquito biting rate. On the other hand, if the extrinsic incubation period is longer than the average mosquito lifespan, control measures targeting the mosquito death rate will be more effective. Intuitively, one might think that resources for malaria control should be allocated to the region with higher malaria transmission. However, our sensitivity analyses indicated that this is not always the case. In fact, if migration into the lower transmission patch is much faster than migration into the higher transmission patch, the lower transmission patch is potentially the better target for malaria control efforts. While human movement between regions poses challenges to malaria control and elimination, if estimates of relevant parameters in the model are known, including migration rates, our results can help inform which region to target and what type of control measure to implement for the greatest success.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Gait Control Using Functional Electrical Stimulation Based on Controlling the Shank Dynamics

Introduction: Efficient gait control using Functional Electrical Stimulation (FES) is an open research problem. In this research, a new intermittent controller has been designed to control the human shank movement dynamics during gait. Methods: In this approach, first, the three-dimensional phase space was constructed using the human shank movement data recorded from the healthy subjects. Then...

متن کامل

Malaria drug resistance: the impact of human movement and spatial heterogeneity.

Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an [Formula: see text] patch system is presented. The disease-free equilibrium of the model is globally asympt...

متن کامل

بررسی مکانی موارد گزارش‌شده بیماری مالاریا با استفاده از سیستم اطلاعات جغرافیایی (GIS) در شهر بم طی سال‌های 1393-1383

Background and Objectives: Public health issues and the spread of disease correlate with geography and always have locational aspects.. Therfore, in this study the spatial analysis of malaria disease reports between 2004-2014 in Bam were investigated using geographic information system (GIS). Materials and Methods: In this cross-sectional study, information on positive cases of malaria were ...

متن کامل

Determination of Age and Vectorial Capacity of Anopheles Maculipennis Sensu Lato in the Central Plateau of Iran

Background and Purpose: Islamic Republic of Iran has greatly reduced its malaria burden and has a national goal to eliminate malaria by 2025. The aim of this study was to determine the population dynamics of Anopheles maculipennis sensu lato, in relation to probable malaria transmission. For this purpose, the study was conducted in three villages in Isfahan Province of Iran, from April to March...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 303  شماره 

صفحات  -

تاریخ انتشار 2012